Optimal Structure Design of Modular Neural Network
نویسندگان
چکیده
منابع مشابه
Optimal Modular Feedforward Neural Nets Based on Functional Network Architectures
Functional networks combine both domain and data knowledge to develop optimal network architectures for some types of interesting problems. The topology of the network is obtained from qualitative domain knowledge, and data is used to fit the processing functions appearing in the network; these functions are supposed to be linear combinations of known functions from appropriate families. In thi...
متن کاملOptimal Self Tuning Neural Network Controller Design
The proposed paper deals with modeling and control of continuous-time processes using artificial neural network with orthogonal activation functions, applicable for real-time control. A genetic algorithm has been used to find the optimal neural structure for on-line identification with the best learning algorithm. A moving prediction horizon in the control algorithm found by genetic algorithm h...
متن کاملNeural Network Exploration Using Optimal Experiment Design
I consider the question "How should one act when the only goal is to learn as much as possible?". Building on the theoretical results of Fedorov (1972, Theory of Optimal Experiments, Academic Press) and MacKay (1992, Neural Computation, 4, 590-604), I apply techniques from optimal experiment design (OED) to guide the query/action selection of a neural network learner. I demonstrate that these t...
متن کاملDesign and evolution of modular neural network architectures
To investigate the relations between structure and function in both artificial and natural neural networks, we present a series of simulations and analyses with modular neural networks. We suggest a number of design principles in the form of explicit ways in which neural modules can cooperate in recognition tasks. These results may supplement recent accounts of the relation between structure an...
متن کاملDesign of Modular Neural Network Architectures Using Genetic Algorithms
In this paper, we propose an evolutionary approach to the design of optimal modular neural network architectures. In this approach, a modular neural network is treated as a phenotype of an individual, and the modular architecture is optimized through the evolution of its genetic representation (genotype) by using genetic algorithms. As one of the modular neural networks, we adopt Cross-Coupled ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Korean Institute of Intelligent Systems
سال: 2003
ISSN: 1976-9172
DOI: 10.5391/jkiis.2003.13.1.006